Publications
The following are publications known to include results using CMIP6 HighResMIP model simulations or derived information (or be extremely relevant/related). Papers that include PRIMAVERA co-authors can also be found at https://www.primavera-h2020.eu/output/scientific-papers/.
Published
2024 (9)
Bokri, A., and Salimun, E., 2024: Future projection of extreme rainfall over Malaysia using HighResMIP (CMIP6) during boreal winter and summer. The Proceedings of The International Conference on Climate Change, 8(1), 22–35. https://doi.org/10.17501/2513258X.2024.8103.
Bower, E. and Reed, K.A, 2024: Using high resolution climate models to explore future changes in post-tropical cyclone precipitation. Environ. Res. Lett. 19. https://doi.org/10.1088/1748-9326/ad2163
Chen, K., Hong, C., Tsou, C., and Wu, D., 2024: Present Climate and Future Changes in the Annual Cycle of TC Activity in the WNP Investigated by HighResMIP GCMs. J. Climate, 37, 4775–4791. https://doi.org/10.1175/JCLI-D-24-0048.1
Gao, J., Minobe, S., Roberts, M.J. et al, 2024: Projected future changes in bomb cyclones by the HighResMIP-PRIMAVERA multimodel ensemble. Clim. Dyn. https://doi.org/10.1007/s00382-024-07327-7
Li, Z., Zhou, W, 2024: Poleward migration of tropical cyclones over the western North Pacific in the CMIP6-HighResMIP models constrained by observations. npj Clim Atmos Sci 7, 161. https://doi.org/10.1038/s41612-024-00704-3.
Negron-Juarez, R., Wehner, M., Silva Dias, A.M.F., Ullrich, P., Chambers, J. and Riley, W.J.: Coupled Model Intercomparison Project Phase 6 (CMIP6) High Resolution Model Intercomparison Project (HighResMIP) Bias in Extreme Rainfall Drives Underestimation of Amazonian Precipitation. Env. Res. Comms. https://doi.org/10.1088/2515-7620/ad6ff9
Selivanova, J., Iovino, D., and Cocetta, F., 2024: Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models, The Cryosphere, 18, 2739–2763. https://doi.org/10.5194/tc-18-2739-2024.
Selivanova, J., Iovino, D., & Vichi, M., 2024: Limited benefits of increased spatial resolution for sea ice in HighResMIP simulations. Geophysical Research Letters, 51, e2023GL107969. https://doi.org/10.1029/2023GL107969
Williams, N.C., Scaife, A.A. & Screen, J.A., 2024: Effect of increased ocean resolution on model errors in El Niño–Southern Oscillation and its teleconnections. Quarterly Journal of the Royal Meteorological Society, 150(760), 1489–1500. https://doi.org/10.1002/qj.4655
2023 (20)
Akhter, S., Holloway, C.E., Hodges, K. et al, 2023: How well do high-resolution Global Climate Models (GCMs) simulate tropical cyclones in the Bay of Bengal?. Clim Dyn. https://doi.org/10.1007/s00382-023-06745-3
Ali, H., Fowler, H. J., Vanniere, B., & Roberts, M. J., 2023: Fewer, but more intense, future Tropical Storms over the Ganges and Mekong basins. Geophysical Research Letters, 50, e2023GL104973. https://doi.org/10.1029/2023GL104973
An, B., Yu, Y., Hewitt, H. et al, 2023: The benefits of high-resolution models in simulating the Kuroshio Extension and its long-term changes. Clim. Dyn. https://doi.org/10.1007/s00382-023-06862-z
Barrell, C., Renfrew, I. A., King, J. C., Abel, S. J., & Elvidge, A. D., 2023: Projected changes to wintertime air-sea turbulent heat fluxes over the subpolar North Atlantic Ocean. Earth’s Future, 11, e2022EF003337. https://doi.org/10.1029/2022EF003337
Bercos-Hickey, E., Patricola, C. M., Loring, B., & Collins, W. D., 2023. The relationship between African easterly waves and tropical cyclones in historical and future climates in the HighResMIP-PRIMAVERA simulations. J. Geophys. Res.: Atmospheres, 128, e2022JD037471. https://doi.org/10.1029/2022JD037471
Camargo, S.J., H. Murakami, N. Bloemendaal, S. Chand, M.S. Deshpande, C. Dominguez-Sarmiento, J.J. González-Alemán, T.R. Knutson, I-I Lin, I.-J. Moon, C.M. Patricola, K.A. Reed, M.J. Roberts, E. Scoccimarro, F. Tam, E.J. Wallace, L. Wu, Y. Yamada, W. Zhang, and H. Zhao, 2023: An Update on the Influence of Natural Climate Variability and Anthropogenic Climate Change on Tropical Cyclones. Tropical Cyclone Research and Review, 12, 216-239. https://doi.org/10.1016/j.tcrr.2023.10.001
Cavicchia, L., Scoccimarro, E., Ascenso, G., Castelletti, A., Giuliani, M., & Gualdi, S., 2023. Tropical cyclone genesis potential indices in a new high-resolution climate models ensemble: Limitations and way forward. Geophysical Research Letters, 50, e2023GL103001. https://doi.org/10.1029/2023GL103001
Chang, P., Xu, G., Kurian, J. et al, 2023. Uncertain future of sustainable fisheries environment in eastern boundary upwelling zones under climate change. Commun Earth Environ 4, 19. https://doi.org/10.1038/s43247-023-00681-0
Fu, Z.-H., Zhan, R., Zhao, J., Yamada, Y., & Song, K., 2023: Future projections of multiple tropical cyclone events in the Northern Hemisphere in the CMIP6-HighResMIP models. Geophys. Res. Let., 50, e2023GL103064. https://doi.org/10.1029/2023GL103064
Jackson, L.C., Hewitt, H.T., Bruciaferri, D., Calvert, D. , Graham, T., Guiavarc’h, C., Menary, M.B., New, A.L., Roberts, M. and Storkey, D., 2023: Challenges simulating the AMOC in climate models. Phil. Trans. R. Soc. A.3812022018720220187. https://doi.org/10.1098/rsta.2022.0187
Michalek, A. T., Villarini, G., Kim, T., Quintero, F., Krajewski, W. F., & Scoccimarro, E., 2023: Evaluation of CMIP6 HighResMIP for hydrologic modeling of annual maximum discharge in Iowa. Water Resources Research, 59, e2022WR034166. https://doi.org/10.1029/2022WR034166
Michel, S.L.L., von der Heydt, A.S., van Westen, R.M. et al, 2023: Increased wintertime European atmospheric blocking frequencies in General Circulation Models with an eddy-permitting ocean. npj Clim. Atmos. Sci. 6, 50. https://doi.org/10.1038/s41612-023-00372-9
Mishra, A. K., Jangir, B., & Strobach, E. (2023). Does increasing climate model horizontal resolution be beneficial for the Mediterranean region?: Multimodel evaluation framework for High-Resolution Model Intercomparison Project. Journal of Geophysical Research: Atmospheres, 128, e2022JD037812. https://doi.org/10.1029/2022JD037812
Muis, S., Aerts, J. C. J. H., Á. Antolínez, J. A., Dullaart, J. C., Duong, T. M., Erikson, L., et al., 2023: Global projections of storm surges using high-resolution CMIP6 climate models. Earth’s Future, 11, e2023EF003479. https://doi.org/10.1029/2023EF003479
Patrizio, C. R., P. J. Athanasiadis, C. Frankignoul, D. Iovino, S. Masina, L. Famooss Paolini, and S. Gualdi, 2023: Improved Extratropical North Atlantic Atmosphere–Ocean Variability with Increasing Ocean Model Resolution. J. Climate, 36, 8403–8424. https://doi.org/10.1175/JCLI-D-23-0230.1
Priestley, M. D. K., & Catto, J. L., 2022: Improved representation of extratropical cyclone structure in HighResMIP models. Geophysical Research Letters, 49, e2021GL096708. https://doi.org/10.1029/2021GL096708
Seddon, J., Stephens, A., Mizielinski, M. S., Vidale, P. L., and Roberts, M. J., 2023: Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10): Geosci. Model Dev., 16, 6689-6700. https://doi.org/10.5194/gmd-16-6689-2023
Seo, H., and Coauthors, 2023: Ocean Mesoscale and Frontal-Scale Ocean-Atmosphere Interactions and Influence on Large-Scale Climate: A Review. J. Climate, 36, 1981-2013. https://doi.org/10.1175/JCLI-D-21-0982.1
Smith, I.H., Williams, P.D. & Schiemann, R., 2023: Clear-air turbulence trends over the North Atlantic in high-resolution climate models. Clim. Dyn. https://doi.org/10.1007/s00382-023-06694-x
Wang, S., Ma, X., Zhou, S. et al., 2023: Extreme atmospheric rivers in a warming climate. Nat Commun 14, 3219. https://doi.org/10.1038/s41467-023-38980-x
Published
2022 (26)
Athanasiadis, P. J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R., Baker, A.J., Vidale, P.L., Bellucci, A., Ruggieri, P., Haarsma, R., Roberts, M., Roberts, C., Novak, L., Guialdi, S., 2022: Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet. J. Clim. https://doi.org/10.1175/JCLI-D-21-0515.1.
Baker, A. J., Roberts, M. J., Vidale, P. L., Hodges, K. I., Seddon, J., Vannière, B., Haarsma, R. J., Schiemann, R., Kapetanakis, D., Tourigny, E., Lohmann, K., Roberts, C. D., & Terray, L., 2022: Extratropical Transition of Tropical Cyclones in a Multiresolution Ensemble of Atmosphere-Only and Fully Coupled Global Climate Models. J. Clim., 35, 5283-5306. https://doi.org/10.1175/JCLI-D-21-0801.1
Bloemendaal, N., de Moel, H., Martinez, A.B., Muis, S., Haigh, I,D., van der Wiel, K., Haarsma, R.J., Ward, P.J., Roberts, M.J., Dullaart, J.C.M, and Aerts, J.C.J.H, 2022: A globally consistent local-scale assessment of future tropical cyclone risk. Science Advances. https://doi.org/10.1126/sciadv.abm8438.
Bloomfield, H. C., Brayshaw, D. J., Deakin, M., and Greenwood, D., 2022: Hourly historical and near-future weather and climate variables for energy system modelling, Earth Syst. Sci. Data Discuss., pp.1-26. https://doi.org/10.5194/essd-14-2749-2022.
Craig, M.T., Wohland, J., Stoop, L.P., Kies, A., Pickering, B., Bloomfield, H.C., Browell, J., De Felice, M., Dent, C.J., Deroubaix, A. and Frischmuth, F., 2022. Overcoming the disconnect between energy system and climate modeling. Joule. https://doi.org/10.1016/j.joule.2022.05.010
Chen, Q., Ge, F., Jin, Z., Lin, Z., 2022: How well do the CMIP6 HighResMIP models simulate precipitation over the Tibetan Plateau?, Atmos. Res., https://doi.org/10.1016/j.atmosres.2022.106393
Dorrington, J., Strommen, K., and Fabiano, F., 2022: Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes, Weather Clim. Dynam., 3, 505–533, 2022. https://doi.org/10.5194/wcd-3-505-2022.
Farneti, R., Stiz, A. & Ssebandeke, J.B. Improvements and persistent biases in the southeast tropical Atlantic in CMIP models. npj Clim Atmos Sci 5, 42 (2022). https://doi.org/10.1038/s41612-022-00264-4.
Haslebacher, C., Demory, M.-E., Demory, B.-O., Sarazin, M., and Vidale, P. L., 2022: Impact of climate change on site characteristics of eight major astronomical observatories using high-resolution global climate projections until 2050. Astronomy and Astrophysics, 665. https://doi.org/10.1051/0004-6361/202142493.
Hewitt, H., Fox-Kemper, B., Pearson, B. et al., 2022: The small scales of the ocean may hold the key to surprises. Nature Climate Change, 12, 496–499. https://doi.org/10.1038/s41558-022-01386-6.
Hodson, D., Bretonnière, P.-A., Cassou, C., Davini, P., Klingaman, N., Lohmann, K., Lopez-Parages, J., Martín-Rey, M., Moine, M.-P., Monerie, P.-A., Putrasahan, D. A., Roberts, C. D., Robson, J., Ruprich-Robert, Y., Sanchez-Gomez, E., Seddon, J. and Senan, R., 2022: Coupled climate response to Atlantic Multidecadal Variability in a multi-model multi-resolution ensemble. Clim. Dyn. ISSN 0930-7575. https://link.springer.com/article/10.1007/s00382-022-06157-9.
Leung, L. R., Boos, W. R., Catto, J. L., DeMott, C., Martin, G. M., Neelin, J. D., O’Brien, T. A., Xie, S., Feng, Z., Klingaman, N. P., Kuo, Y., Lee, R. W., Martinez-Villalobos, C., Vishnu, S., Priestley, M., Tao, C., & Zhou, Y., 2022: Exploratory precipitation metrics: spatiotemporal characteristics, process-oriented, and phenomena-based, Journal of Climate (published online ahead of print 2022). https://doi.org/10.1175/JCLI-D-21-0590.1.
Liu, B., Gan, B., Cai, W., Wu, L., Geng, T., Wang, H., et al., 2022: Will increasing climate model resolution be beneficial for ENSO simulation? Geophysical Research Letters, 49, e2021GL096932. https://doi.org/10.1029/2021GL096932.
Lockwood, J., et al., 2022: Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set. Nat. Hazards Earth Syst. Sci., 22, 3585-3606. https://doi.org/10.5194/nhess-22-3585-2022.
López-Parages, J., and Terray, L., 2022: Tropical North Atlantic Response to ENSO: Sensitivity to Model Spatial Resolution. Journal of Climate 35, 1, 3-16. https://doi.org/10.1175/JCLI-D-21-0240.1.
Moon, Y., Kim, D., Wing, A.A., Camargo, S.J., Zhao, M., Leung, L.R., Roberts, M.J., 2022: An evaluation of tropical cyclone rainfall structure in the HighResMIP simulations against satellite observations. J. Clim., 35, 3715-3738. https://doi.org/10.1175/JCLI-D-21-0564.1.
Moreno-Chamarro, E., E., Caron, L.-P., Loosveldt Tomas, S., Gutjahr, O., Moine, M.-P., Putrasahan, D., Roberts, C. D., Roberts, M. J., Senan, R., Terray, L., Tourigny, E., and Vidale, P. L., 2022: Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models. Geosci. Model Dev., 15, 269–289, 2022. https://doi.org/10.5194/gmd-15-269-2022.
Notaro, M., Jorns, J., and Briley, L., 2022: Representation of Lake-Atmosphere Interactions and Lake-Effect Snowfall in the Laurentian Great Lakes Basin Among HighResMIP Global Climate Models. Journal of the Atmospheric Sciences. https://doi.org/10.1175/JAS-D-21-0249.1.
Paolini, L. F., Athanasiadis, P. J., Ruggieri, P., & Bellucci, A., 2022: The atmospheric response to meridional shifts of the Gulf Stream SST front and its dependence on model resolution, Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0530.1.
Priestley, M. D. K., & Catto, J. L., 2022: Improved representation of extratropical cyclone structure in HighResMIP models. Geophysical Research Letters, 49, e2021GL096708. https://doi.org/10.1029/2021GL096708.
Rhoades, A.M., et al., 2022: Asymmetric Emergence of Low-to-No Snow in the American Cordillera. Nat. Clim. Chang. 12, 1151–1159 (2022). https://doi.org/10.1038/s41558-022-01518-y.
Song, K., Zhao, J., Zhan, R., Tao, L., & Chen, L., 2022: Confidence and uncertainty in simulating tropical cyclone long-term variability using the CMIP6-HighResMIP, Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0875.1.
Stoop, L.P., Duijm, E., Feelders, A., Broek, M.v.d. (2021). Detection of Critical Events in Renewable Energy Production Time Series. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2021. Lecture Notes in Computer Science(), vol 13114. Springer, Cham. https://doi.org/10.1007/978-3-030-91445-5_7
Tang, Y., Huangfu, J., Huang, R. and Chen, W. (2022): Simulation and projection of tropical cyclone activities over the Western North Pacific by CMIP6 HighResMIP. J. Clim., 35, 4171-4194. https://doi.org/10.1175/JCLI-D-21-0760.1.
Tsartsali, E. E., Haarsma, R. J., Athanasiadis, P. J., Bellucci, A., de Vries, H., Drijfhout, S., de Vries, I. E., Putrasahan, D., Roberts, M. J., Sanchez-Gomez, E., Roberts, C. D., 2022: Impact of resolution on the atmosphere-ocean coupling along the Gulf Stream in global high resolution models. Clim. Dyn. https://doi.org/10.1007/s00382-021-06098-9.
Zhao, M., 2022: A Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates. Journal of Climate, 35(2), 479-497. https://doi.org/10.1175/JCLI-D-21-0145.1.
2021 (22)
Bellucci, A., and Coauthors, 2021: Air-sea interactions over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Clim. Dyn. https://doi.org/10.1007/s00382-020-05573-z.
Dong, T., Dong, W., 2021: Evaluation of extreme precipitation over Asia in CMIP6 models. Clim Dyn 57, 1751–1769. https://doi.org/10.1007/s00382-021-05773-1
Grist, J.P., S. A. Josey, B. Sinha, J. L. Catto, M. J. Roberts, A.C. Coward, 2021: Future evolution of an eddy rich ocean leads to enhanced east Atlantic storminess in a coupled model projection. GRL. https://doi.org/10.1029/2021GL092719.
Hariadi, M. H., van der Schrier, G., Steeneveld, G.-J., Sopaheluwakan, A., Tank, A. K., Roberts, M. J., Moine, M.-P., Bellucci, A., Senan, R., Tourigny, E., & Putrasahan, D., 2021: Evaluation of onset, cessation and seasonal precipitation of the Southeast Asia rainy season in CMIP5 regional climate models and HighResMIP global climate models. International Journal of Climatology, 1– 18. https://doi.org/10.1002/joc.7404.
Huang, H., Patricola, C. M., Collins, W. D., 2021: The influence of ocean coupling on simulated and projected tropical cyclone precipitation in the HighResMIP-PRIMAVERA simulations. Geophysical Research Letters, 48, e2021GL094801. https://doi.org/10.1029/2021GL094801.
Ineson, S., Dunstone, N.J., Ren, H.-L., Renshaw, R., Roberts, M.J., Scaife, A.A., Yamazaki, K., 2021: ENSO amplitude asymmetry in Met Office Hadley Centre climate models. Frontiers in Climate. https://doi.org/10.3389/fclim.2021.789869.
Jinxiao Li, Qing Bao, Yimin Liu, Lei Wang, Jing Yang, Guoxiong Wu, Xiaofei Wu, Bian He, Xiaocong Wang, Xiaoqi Zhang, Yaoxian Yang, Zili Shen, 2021. Effect of Horizontal Resolution on the Simulation of Tropical Cyclones in the Chinese Academy of Sciences FGOALS-f3 Climate System Model. GMD. https://doi.org/10.5194/gmd-2021-19.
Judt, F., D. Klocke, R. Rios-Berrios, B. Vanniere, F. Ziemen, L. Auger, J. Biercamp, C. Bretherton, X. Chen, P. Duben, C. Hohenegger, M. Khairoutdinov, C. Kodama, L. Kornblueh, S.-J. Lin, M. Nakano, P. Neumann, W. Putman, N. Röber, M. Roberts, M. Satoh, R. Shibuya, B. Stevens, P. L. Vidale, N. Wedi, L. Zhou, 2021: Tropical Cyclones in Global Storm-Resolving Models. J. Meteor. Soc. Japan. https://doi.org/10.2151/jmsj.2021-029.
Koenigk, T., Fuentes-Franco, R., Meccia, V.L. et al, 2021: Deep mixed ocean volume in the Labrador Sea in HighResMIP models. Clim Dyn, 57, 1895–1918. https://doi.org/10.1007/s00382-021-05785-x.
Kreussler, P., Caron, L.-P., Wild, S., Loosveldt Tomas, S., Chauvin, F., Moine, M.-P., Roberts, M.J., Ruprich-Robert, Y., Seddon, J., Valcke, S., Vanniere, B., Vidale, P.L., 2021: Tropical Cyclone Integrated Kinetic Energy in an Ensemble of HighResMIP Simulations. GRL, 48, e2020GL090963. https://doi.org/10.1029/2020GL090963.
Lohmann, K., Putrasahan, D.A., von Storch, J.-S., Gutjahr, O., Jungclaus, J. H., Haak, H., 2021: Response of the northern North Atlantic to reduced and enlarged wind stress forcing and its impact on the Atlantic meridional overturning circulation. JGR-Oceans, 126. https://doi.org/10.1029/2021JC017902.
Meccia, V., Iovino, D. and Bellucci, A., 2021: North Atlantic gyre circulation in PRIMAVERA models. Clim. Dyn. https://doi.org/10.1007/s00382-021-05686-z.
Monerie, P.-A. and coauthors, 2021: Role of the Atlantic Multidecadal Variability in modulating East Asian climate. Clim. Dyn. https://doi.org/10.1007/s00382-020-05477-y.
Moreno-Chamarro, E., L.-P. Caron, P. Ortega, S. L. Tomas, M. J. Roberts, 2021: Can we trust CMIP5/6 future projections of European winter precipitation? ERL. https://iopscience.iop.org/article/10.1088/1748-9326/abf28a.
Moreton, S., Ferreira, D., Roberts, M., Hewitt, H., 2021: Air-sea turbulent heat flux feedback over mesoscale eddies. Geophysical Research Letters, 48, e2021GL095407. https://doi.org/10.1029/2021GL095407.
Putrasahan, D., von Storch, J.-S., Gutjahr, O., Haak, H., Lohmann, K., Roberts, M.J., Jungclaus, J.: Effect of resolving ocean eddies on the transient response of global mean surface temperature to abrupt 4xCO2 forcing. GRL. https://doi.org/10.1029/2020GL092049
Squintu, A.A., van der Schrier, G., van den Besselaar, E., van der Linden, E., Scoccimarro, E., Roberts, C. Klein Tank, A., Roberts, M., Putrasahan, D., Senan, R., 2021: Evaluation of trends in extreme temperatures simulated by HighResMIP models across Europe. Clim. Dyn. https://doi.org/10.1007/s00382-020-05596-6.
Treguier, A. M., P. Mathiot, T. Graham, D. Copsey, C. Lique, and J. Sterlin, 2021: Heat Balance in the Nordic Seas in a Global 1/12° Coupled Model. J. Climate, 34, 89–106. https://doi.org/10.1175/JCLI-D-20-0063.1.
Vidale, P.L., Hodges, K., Davini, P., Roberts, M., Plesca, E., Corti, S., Strommen, K., Weisheimer, A., 2021: Impact of stochastic physics and model resolution on the simulation of Tropical Cyclones in climate GCMs. J. Clim. https://doi.org/10.1175/JCLI-D-20-0507.1.
Wehner, M., Jiwoo Lee, Mark Risser, Paul Ullrich, Peter Gleckler, William D. Collins (2021) Evaluation of extreme subdaily precipitation in high-resolution global climate model simulations. Phil. Trans. R. Soc., 379. https://doi.org/10.1098/rsta.2019.0545.
Yamada, Y., Kodama, C., Satoh, M., Sugi, M., Roberts, M. J., Mizuta, R., Noda, A. T., Nasuno, T., Nakano, M., Vidale, P. L., 2021: Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Progress in Earth and planetary Science, 8, 11. https://doi.org/10.1186/s40645-020-00397-1.
Zhang, W., G. Villarini, E. Scoccimarro, M. Roberts, P. L. Vidale, B. Vanniere, L.-P. Caron, D. Putrasahan, C. Roberts, R. Senan, M.-P. Moine, 2021: Tropical Cyclone Precipitation in the HighResMIP Atmosphere-only Experiments of the PRIMAVERA Project. Clim. Dyn. https://doi.org/10.1007/s00382-021-05707-x.
2020 (38)
Bador, M., Boé, J., Terray, L., Alexander, L. V., Bellucci, A., Haarsma, R., Koenigk, T., Moine, M.-P., Lohmann, K., Putrasahan, D. A., Roberts, C., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J., Senan, R., Valcke, S., Vanniere, B., 2020: Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. JGR Atmos., 125, e2019JD032184. https://doi.org/10.1029/2019JD032184
Balaguru, K., L.R. Leung, L. van Roekel, J.-C. Golaz, P. Ullrich, P.M. Caldwell, S.M. Hagos, B.E. Harrop, and A. Mametjanov. 2020. Characterizing Tropical Cyclones in U.S. DOE’s Energy Exascale Earth System Model Version 1. J. Adv. Mod. Earth Syst., 12. https://doi.org/10.1029/2019MS002024.
Bock, L., A. Lauer, V. Eyring, M. Schlund, M. Barreiro, N. Bellouin, C. Jones, G. A. Meehl, V. Predoi, and M. J. Roberts, 2020: Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. https://doi.org/10.1029/2019JD032321
Boé, J., Terray, L., Moine, M.-P., Valcke, S., Bellucci, A., Drijfhout, S., Haarsma, R., Lohmann, K., Putrasahan, D., Roberts, C., Roberts, M., Scoccimarro, E., Seddon, J., Senan, R., Wyser, K., 2020: Past long-term summer warming over western Europe in new generation climate models: role of large-scale atmospheric circulation. ERL. https://doi.org/10.1088/1748-9326/ab8a89
Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., et al. (2020). An unprecedented set of high‐resolution earth system simulations for understanding multiscale interactions in climate variability and change. Journal of Advances in Modeling Earth Systems, 12, e2020MS002298. https://doi.org/10.1029/2020MS002298.
Davini P. and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern hemisphere atmospheric blocking simulation in present and future climate. J. Clim., 33(23), 10021-10038. https://doi.org/10.1175/JCLI-D-19-0862.1
de la Vara, A., Cabos, W., Sein, D.V. et al., 2020: On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Clim. Dyn., 54, 4733–4757. https://doi.org/10.1007/s00382-020-05256-9
Demory, M.-E., Berthou, S., Fernández, J., Sørland, S. L., Brogli, R., Roberts, M. J., Beyerle, U., Seddon, J., Haarsma, R., Schär, C., Buonomo, E., Christensen, O. B., Ciarlo ̀, J. M., Fealy, R., Nikulin, G., Peano, D., Putrasahan, D., Roberts, C. D., Senan, R., Steger, C., Teichmann, C., and Vautard, R., 2020: European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 13, 5485–5506. https://doi.org/10.5194/gmd-13-5485-2020
Docquier, D., R. Fuentes-Franco, T. Koenigk, T. Fichefet, 2020: Sea ice - ocean interactions in the Barents Sea modeled at different resolutions. Front. Earth Sci., 8, 172. https://doi.org/10.3389/feart.2020.00172
Fabiano F. , H.M. Christensen, K. Strommen , P. Athanasiadis , A. Baker , R. Schiemann, S. Corti, 2020: Euro-Atlantic Weather Regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance. Climate Dynamics. https://doi.org/10.1007/s00382-020-05271-w
Fedele, G., A. Bellucci, S. Masina, S. Pierini, 2020: Decadal variability of the Kuroshio Extension: The response of the jet to increased atmospheric resolution in a coupled ocean-atmosphere model. Climate Dynamics. https://doi.org/10.1007/s00382-020-05528-4
Fuentes-Franco, R. and Koenigk, T., 2020: Identifying remote sources of interannual variability for summer precipitation over Nordic European countries tied to global teleconnection wave patterns, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-15. https://doi.org/10.1080/16000870.2020.1764303
Gao, J., Minobe, S, Roberts, M.J., Haarsma, R., Putrasahan, D., Roberts, C.D., Scoccimarro, E., Terray, L., Vannière, B. and Vidale, P.L., 2020: Influence of model resolution on bomb cyclones revealed by HighResMIP-PRIMAVERA simulations. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab88fa
Haarsma, R, M Acosta, R Bakhshi, P-A Bretonnière, L-P Caron, M Castrillo, S Corti, P Davini, E Exarchou, F Fabiano, U Fladrich, R Fuentes, J García-Serrano, J von Hardenberg, T Koenigk, X Levine, V Meccia, T van Noije, G van den Oord, F Palmeiro, M Rodrigo, Y Ruprich-Robert, P Le Sager, E Tourigny, S Wang, M van Weele and K Wyser, 2020: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR. Description, model performance, data handling and validation. Geosci. Model Dev. https://doi.org/10.5194/gmd-2019-350
Hewitt, H. T., and Co-authors, 2020: Resolving and parameterising the ocean mesoscale in Earth System Models. Current Climate Change Reports, 6, 137–152. https://doi.org/10.1007/s40641-020-00164-w
Hirschi, J. J.-M.,, Barnier, B., Böning, C., Biastoch, A., Blaker, A. T., Coward, A., Danilov, S. , Drijfhout, S., Getzlaff, K., Griffies, S. M., Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N., Marzocchi, A., Moat, B., Molines, J.-M., Myers, P. G., Penduff, T., Roberts, M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small, J., Spence, P., Thompson, L., Weijer, W., Xu, X., 2020: The Atlantic meridional overturning circulation in high resolution models. J. Geophys. Res. https://doi.org/10.1029/2019JC015522
Jackson, L.C.,·M. J. Roberts, H. T. Hewitt, D. Iovino, T. Koenigk, V. L. Meccia, C. D. Roberts, Y. Ruprich-Robert, R. A. Wood, 2020: Does ocean resolution affect the rate of AMOC weakening? Clim. Dyn. https://doi.org/10.1007/s00382-020-05345-9
Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D.V., Sidorenko, D., Wang, Q., 2020: A simplified kinetic energy backscatter parametrization: From implementation to global ocean simulations. Journal of Advances in Modeling Earth Systems, 12, e2020MS002175. https://doi.org/10.1029/2020MS002175
Klaver, R., R. Haarsma, P.L. Vidale, W. Hazeleger, 2020: Effective resolution in high resolution global atmospheric models for climate studies. Atmospheric Science Letters. https://doi.org/10.1002/asl.952
Kodama, T. Ohno, T. Seiki, H. Yashiro, A. T. Noda, M. Nakano, Y. Yamada, W. Roh, M. Satoh, T. Nitta, D. Goto, H. Miura, T. Nasuno, T., Miyakawa, Y.-W. Chen, and M. Sugi, 2020: The non-hydrostatic global atmospheric model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates, Geosci. Model Dev. https://doi.org/10.5194/gmd-2019-369.
Meccia, V. L., Fabiano, F., Davini P., & Corti S., 2020. Stochastic parameterizations and the climate response to external forcing: An experiment with EC‐Earth. Geophysical Research Letters, 47, e2019GL085951. https://doi.org/10.1029/2019GL085951
Molteni, F., C. D. Roberts, R. Senan, S. P. E. Keeley, A. Bellucci, S. Corti, R. F. Franco, R. Haarsma, X. Levine, D. Putrasahan, M. J. Roberts, L. Terray, 2020: Boreal-winter teleconnections with the tropical Indo-Pacific rainfall in HighResMIP historical simulations from the PRIMAVERA project. Clim. Dyn. http://doi.org/10.1007/s00382-020-05358-4
Moreton, S., D. Ferreira, M. Roberts, H. Hewitt, 2020: Evaluating surface eddy properties in climate simulations with ‘eddy-present’ and ‘eddy-rich’ ocean resolution. Ocean Modelling, 147. https://doi.org/10.1016/j.ocemod.2020.101567
Müller, O. V., P. L. Vidale, B. Vannière, R. Schiemann, R. Senan, R. Haarsma and J. Jungclaus, 2020: Land-atmosphere Coupling Sensitivity to GCMs Resolution: A Multi-model Assessment of Local and Remote Processes in the Sahel Hotspot. J. Clim., 1-55. https://doi.org/10.1175/JCLI-D-20-0303.1
Ponsoni, L., Massonnet, F., Docquier, D., Van Achter, G., and Fichefet, T., 2020: Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations, The Cryosphere. https://doi.org/10.5194/tc-14-2409-2020
Qing BAO, Yimin LIU, Guoxiong WU, Bian HE, Jinxiao LI, Lei WANG, Xiaofei WU, Kangjun CHEN, Xiaocong WANG, Jing YANG & Xiaoqi ZHANG, 2020: CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6, Atmospheric and Oceanic Science Letters, 13:6, 576-581. https://doi.org/10.1080/16742834.2020.1814675.
Roberts, M. J., J. Camp, J. Seddon, P. L. Vidale, K. Hodges, B. Vanniere, J. Mecking, R. Haarsma, A. Bellucci, E. Scoccimarro, L.-P. Caron, F. Chauvin, L. Terray, S. Valcke, M.-P. Moine, D. Putrasahan, C. Roberts, R. Senan, C. Zarzycki, P. Ullrich, 2020: Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multi-model ensemble. J. Climate, 33, 7. https://doi.org/10.1175/JCLI-D-19-0639.1
Roberts, M.J. and 29 Coauthors, 2020: Projected Future Changes in Tropical Cyclones using the CMIP6 HighResMIP Multi-model Ensemble. Geophys. Res. Lett., 47: e2020GL088662. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088662
Roberts, M.J. and 26 Coauthors, 2020: Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. JAMES. https://doi.org/10.1029/2019MS002014
Sainsbury, E. M., Schiemann, R. K. H., Hodges, K. I., Shaffrey, L. C., Baker, A. J., & Bhatia, K. T. , 2020: How Important Are Post‐Tropical Cyclones for European Windstorm Risk? Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020GL089853
Santolaria-Otín, M., J. García-Serrano, M. Ménégoz, J. Bech, 2020: On the observed connection between Arctic sea ice and Eurasian snow in relation to the winter North Atlantic Oscillation. Environ. Res. Lett.. https://doi.org/10.1088/1748-9326/abad57
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L., 2020: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292. https://doi.org/10.5194/wcd-1-277-2020
Scoccimarro, E., et al., 2020: The typhoon-induced drying of the Maritime Continent. PNAS, 117 (8) 3983-3988. https://doi.org/10.1073/pnas.1915364117
Semmler, T., Danilov, S., Gierz, P., Goessling, H., Hegewald, J., Hinrichs, C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D.V., Sidorenko, D., Wang, Q., Jung, T., 2020: Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2019MS002009
Sidorenko, D., Danilov, S., Fofonova, V., Cabos, W., Koldunov, N., Scholz P., Sein, D., Wang, Q., 2020: AMOC, watermass transformations and their responses to changing resolution in the Finite-volumE Sea ice-Ocean Model. Journal of Advances in Modeling Earth Systems, 12, e2020MS002317. https://doi.org/10.1029/2020MS002317
Vanniere, B. Roberts, M.J., Vidale, P.L., Hodges, K., Demory, M.-E., et al., 2020: The moisture budget of tropical cyclones: large scale environmental constraints and sensitivity to model horizontal resolution. J. Clim., 33 (19): 8457–8474. https://doi.org/10.1175/JCLI-D-19-0999.1
Wang, Q., Wekerle, C., Wang, X., Danilov, S., Koldunov, N., Sein, D., et al., 2020: Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophysical Research Letters, 47, e2019GL086682. https://doi.org/10.1029/2019GL086682
Zhao, M. (2020). Simulations of Atmospheric Rivers, Their Variability, and Response to Global Warming Using GFDL’s New High-Resolution General Circulation Model, Journal of Climate, 33(23), 10287-10303. https://doi.org/10.1175/JCLI-D-20-0241.1.
2019 (23)
Baker, A.J., R. Schiemann, K.I. Hodges, M. Demory, M.S. Mizielinski, M.J. Roberts, L.C. Shaffrey, J. Strachan, and P.L. Vidale, 2019: Enhanced Climate Change Response of Wintertime North Atlantic Circulation, Cyclonic Activity, and Precipitation in a 25-km-Resolution Global Atmospheric Model. J. Climate, 32, 7763–7781. https://doi.org/10.1175/JCLI-D-19-0054.1
Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.‐C., Lin, W. et al. (2019). The DOE E3SM coupled model version 1: Description and results at high resolution. Journal of Advances in Modeling Earth Systems, 11, 4095– 4146. https://doi.org/10.1029/2019MS001870.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D., Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G. and Sein, D. V. (2019) Future evolution of Marine Heatwaves in the Mediterranean Sea, Climate Dynamics. https://doi.org/10.1007/s00382-019-04661-z
Docquier, D., J. P. Grist, M. J. Roberts, C. D. Roberts, T. Semmler, L. Ponsoni, F. Massonnet, D. Sidorenko, D. Sein, D. Iovino, T. Fichefet, 2019. Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics. https://doi.org/10.1007/s00382-019-04840-y
Fuentes-Franco R., T. Koenigk, 2019: Sensitivity of the Arctic fresh water budget to model resolution. Climate Dynamics 53, 1765–1781. https://doi.org/10.1007/s00382-019-04735-y
Gonzalez, P., D. Brayshaw, G. Zappa, 2019: The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. Climate Dynamics, 53, 4095–4113. https://doi.org/10.1007/s00382-019-04776-3
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A., 2019: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281. https://doi.org/10.5194/gmd-12-3241-2019
Haarsma, R.J., García-Serrano, J., Prodhomme, C., Bellprat O., Davini P., and Drijfhout S. Sensitivity of winter North Atlantic-European climate to resolved atmosphere and ocean dynamics. Sci Rep 9, 13358 (2019). https://doi.org/10.1038/s41598-019-49865-9
Lima, D. C. A., Soares, P. M. M., Semedo, Á., Cardoso, R. M., Cabos, W. and Sein, D. V. A Climatological Analysis of the Benguela Coastal Low-Level Jet. Journal of Geophysical Research: Atmospheres, 2018. https://doi.org/10.1029/2018JD028944
Monerie, P.‐A., Robson, J., Dong, B., Hodson, D. L. R., & Klingaman, N. P. (2019). Effect of the Atlantic multidecadal variability on the global monsoon. Geophysical Research Letters, 46, 1765– 1775. https://doi.org/10.1029/2018GL080903
Putrasahan, D. A., Lohmann, K., von Storch, J. S., Jungclaus, J. H., Gutjahr, O., & Haak, H. (2019). Surface Flux Drivers for the Slowdown of the Atlantic Meridional Overturning Circulation in a High-Resolution Global Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 11(5), 1349–1363. https://doi.org/10.1029/2018MS001447
Rackow, T., Sein, D. V., Semmler, T., Danilov, S., Koldunov, N. V., Sidorenko, D., Wang, Q., and Jung, T., 2019: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0, Geosci. Model Dev., 12, 2635-2656. https://doi.org/10.5194/gmd-12-2635-2019
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L., 2019: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev. 12, 4999–5028. https://www.geosci-model-dev.net/12/4999/2019/.
Scaife, A. A., J. Camp, R. Comer, P. Davis, M. Gordon, C. MacLachlan, N. Aartin, Y. Nie, H. Ren, M. Roberts, W. Robinson, P. L. Vidale, 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmospheric Science Letters. https://doi.org/10.1002/asl.922
Sidorenko, D., Goessling, H. F., Koldunov, N., Scholz, P., Danilov, S., Barbi, D., Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S., Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D.V., Semmler, T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H., Jung, T., 2019: Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre-industrial and HighResMIP simulations. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS001696
Soares, P., Lima, D. C.A., Semedo, A., Cabos Narvaez, W. D., Sein, D. V. (2019) Climate change impact on the Northwestern African offshore wind energy resources. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab5731
Strommen, K., Mavilia, I., Corti, S., Matsueda, M., Davini, P., von Hardenberg, J., et al. 2019. The sensitivity of Euro-Atlantic regimes to model horizontal resolution. Geophysical Research Letters, 46, 7810–7818. https://doi.org/10.1029/2019GL082843
Thomas, M. A., A. Devasthale, T. Koenigk, K. Wyser, M. Roberts, C. Roberts, K. Lohmann, 2019: A statistical and process oriented evaluation of cloud radiative effects in high resolution global models. Geosci. Model Dev., 12, 1679-1702. https://doi.org/10.5194/gmd-12-1679-2019
Thomas, M.A., Devasthale A., L’Ecuyer T., Wang S., Koenigk T., Wyser K., 2019: Snowfall distribution and its response to the Arctic Oscillation: An evaluation of GCMs in the Arctic using CPR/CloudSat observations. Geosci. Model Dev., 12, 3759–3772. https://doi.org/10.5194/gmd-12-3759-2019
van der Linden, E., R. Haarsma, G. van der Schrier, 2019: Impact of climate model resolution on soil moisture projections in central-western Europe Hydrol. Earth Syst. Sci., 23, 191-206. https://doi.org/10.5194/hess-23-191-2019
Wang, Q., Wang, X., Wekerle C., Danilov, S., Jung, T., Koldunov, N., Lind, S., Sein, D.V., Shu, Q., Sidorenko, D., 2019: Ocean heat transport into the Barents Sea: Distinct controls on the upward trend and interannual variability. Geophysical Research Letters. https://doi.org/10.1029/2019GL083837
Wu, P., M. Roberts, G. Martin, X. Chen, T. Zhou, P. L. Vidale, 2018: The impact of horizontal atmospheric resolution in modelling air-sea fluxes. QJRMS, 145, 3271-3283. https://doi.org/10.1002/qj.3618
Yang, C., Christensen, H.M., Corti S., von Hardenberg J. and Davini P., 2019. The impact of stochastic physics on the El Niño Southern Oscillation in the EC-Earth coupled model. Clim Dyn 53: 2843. https://doi.org/10.1007/s00382-019-04660-0
2018 (13)
Ayarzagüena, B., S. Ineson, N. J. Dunstone, M. P Baldwin and A. A. Scaife, 2018. Intraseasonal effects of El Niño Southern Oscillation on North Atlantic climate. J. Clim. https://doi.org/10.1175/JCLI-D-18-0097.1
Bloemendaal, N., Muis, S., Haarsma, R.J. et al., 2018: Global modelling of tropical cyclone storm surges using high-resolution forecasts. Clim Dyn. https://doi.org/10.1007/s00382-018-4430-x
Grist, J. P., S. A. Josey, A. L. New, M. Roberts, T. Koenigk, D. Iovino, 2018: Increasing Atlantic ocean heat transport in the latest generation coupled ocean-atmosphere models: The role of air-sea interaction. JGR-Oceans, 123, 8624 - 8637. https://doi.org/10.1029/2018JC014387
Lima, D. C. A., Soares, P. M. M., Semedo, Á., Cardoso, R. M., Cabos, W. and Sein, D. V. (2018) A Climatological Analysis of the Benguela Coastal Low‐Level Jet, Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2018JD028944
Massonnet, F., Vancoppenolle, M., Goosse, H., Docquier, D., Fichefet, T., & Blanchard-Wrigglesworth, E. (2018). Arctic sea-ice change tied to its mean state through thermodynamic processes. Nature Climate Change, 8(7), 599–603. https://doi.org/10.1038/s41558-018-0204-z
McCoy, D. T., Field, P. R., Schmidt, A., Grosvenor, D. P., Bender, F. A. M., Shipway, B. J., Hill, A. A., Wilkinson, J. M., Elsaesser, G. S., 2018: Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations. Journal of Atmospheric Chemistry, https://doi.org/10.5194/acp-18-5821-2018
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E., 2018: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP. Geosci. Model Dev., 11, 3681-3712. https://doi.org/10.5194/gmd-11-3681-2018.
Roberts, M. J., P. L. Vidale, C. Senior, H. T. Hewitt, C. Bates, S. Berthou, P. Chang, H. M. Christensen, S. Danilov, M.-E. Demory, S. M. Griffies, R. Haarsma, T. Jung, G. Martin, S. Minobe, T. Ringler, M. Satoh, R. Schiemann, E. Scoccimarro, G. Stephens, M. F. Wehner, 2018: The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale. BAMS. https://doi.org/10.1175/BAMS-D-15-00320.1
Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., et al. (2018). The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10, 2026–2041. https://doi.org/10.1029/2018MS001327
Soares, P. M. M., Lima, D. C. A., Semedo, A., Cardoso, R. M., Cabos, W. and Sein, D. V. (2018) Assessing the climate change impact on the North African offshore surface wind and coastal low-level jet using coupled and uncoupled regional climate simulations, Climate Dynamics. https://doi.org/10.1007/s00382-018-4565-9
Soares, P. M. M., Lima, D. C. A., Semedo, Á., Cardoso, R. M., Cabos, W. and Sein, D. (2018). The North African coastal low level wind jet: a high resolution view, Climate Dynamics. https://doi.org/10.1007/s00382-018-4441-7
Vanniere, B., P. L. Vidale, M.-E. Demory, R. Schiemann, M. J. Roberts, C. D. Roberts, M. Matsueda, L. Terray, T. Koenigk, R. Senan, 2018: Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dynamics. https://doi.org/10.1007/s00382-018-4547-y
Vries, H. de, Scher, S., Haarsma, R., Drijfhout, S., & Delden, A. van. (2018). How Gulf-Stream SST-fronts influence Atlantic winter storms. Climate Dynamics, 1–11. https://doi.org/10.1007/s00382-018-4486-7
2017 (2)
Davini P., S. Corti, F. D’Andrea, G. Riviere, J. von Hardenberg 2017, Improved winter European atmospheric blocking frequencies in high-resolution global climate simulations, J. Adv Model Earth Sy. 9, 2615–2634. https://doi.org/10.1002/2017MS001082
H. T. Hewitt, M. J. Bell, E. P. Chassignet, A. Czaja, D. Ferreira, S. M. Griffies, P. Hyder, J. L. McClean, A. L. New, M. J. Roberts, 2017: Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modelling, https://doi.org/10.1016/j.ocemod.201711002
2016 (1)
R. J. Haarsma, M. Roberts, P. L. Vidale, C. A. Senior, A. Bellucci, Q. Bao, P. Chang, S. Corti, N. S. Fučkar, V. Guemas, J. von Hardenberg, W. Hazeleger, C. Kodama, T. Koenigk, L. R. Leung, J. Lu, J.-J. Luo, J. Mao, M. S. Mizielinski, R. Mizuta, P. Nobre, M. Satoh, E. Scoccimarro, T. Semmler, J. Small, J.-S. von Storch, 2016: High resolution model intercomparison project (HighResMIP). Geoscientifc Model Development. https://doi.org/10.5194/gmd-9-4185-2016
Submitted/in prep (4)
Chen, X., Zhou, T., Wu, P., Roberts, M.J., 2024: Better resolved orography improves precipitation simulation over the Tibetan Plateau in high-resolution models. J. Geophy. Res. (Atmos), revised.
Lockwood, J.F., Athanasiadis, P., Baker, A.J., Hodges, K., Priestley, M.D.K, Roberts, M., Scaife, A.A., Vidale, P. L., Zappa, G., 2024: The effect of increased model resolution on the Northern Hemisphere winter mid-latitude storm track: An equatorward shift due to contraction of the Hadley cell. J. Clim., submitted.
Roberts, M. J., Reed, K. A., Bao, Q., Barsugli, J. J., Camargo, S. J., Caron, L.-P., Chang, P., Chen, C.-T., Christensen, H. M., Danabasoglu, G., Frenger, I., Fučkar, N. S., Hasson, S. U., Hewitt, H. T., Huang, H., Kim, D., Kodama, C., Lai, M., Leung, L.-Y. R., Mizuta, R., Nobre, P., Ortega, P., Paquin, D., Roberts, C. D., Scoccimarro, E., Seddon, J., Treguier, A. M., Tu, C.-Y., Ullrich, P. A., Vidale, P. L., Wehner, M. F., Zarzycki, C. M., Zhang, B., Zhang, W., and Zhao, M., 2024: High Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7, EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-2582.
Ogawa, F., Minobe, S. Roberts, M.J., Haarsma, R., Putrasahan, D., Scoccimarro, E., Terray, L., and Vidale, P.L., 2024: Cause of the recent tendency of tropical cyclones approaching coasts as revealed by HighResMIP-PRIMAVERA simulations. J. Clim., revised.
Derived datasets
Roberts, M. (2019): CMIP6 HighResMIP: Tropical storm tracks. Centre for Environmental Data Analysis, date of citation. http://catalogue.ceda.ac.uk/uuid/e82a62d926d7448696a2b60c1925f811.
Muis, S., Irazoqui Apecechea, M., Antolínez, J. A. A., Verlaan, M., Yan, K., Dullaart, J., et al. (2022a). Global sea level change indicators from 1950 to 2050 derived from reanalysis and high resolution CMIP6 climate projections [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.6edf04e0
Muis, S., Irazoqui Apecechea, M., Antolínez, J. A. A., Verlaan, M., Yan, K., Dullaart, J., et al. (2022b). Global sea level change time series from 1950 to 2050 derived from reanalysis and high resolution CMIP6 climate projections [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.a6d42d60
Lockwood, J. F., Guentchev, G., Brown, S. J, Palin, E. J., Roberts, M. J., and Thornton, H. E., 2022: PRIMAVERA European winter windstorm event set, Zenodo [data set]. https://doi.org/10.5281/zenodo.6492182.
Synthetic TC track datasets from Bloemendaal et al. (2022). https://doi.org/10.4121/uuid:82c1dc0d-5485-43d8-901a-ce7f26cda35d; https://doi.org/10.4121/uuid:779b9dfd-b0ff-4531-8833-aaa9c0cf6b5a; https://doi.org/10.4121/14237678.v1; https://doi.org/10.4121/14510817.v1
HighResMIP protocol citations:
Citations and other metrics are available from Haarsma et al., 2016.